City Types for Improving Health and Equity

Understanding America’s Small and Midsize Cities

August 2020
We set out to better understand the wide variations in health across America’s small and midsize cities and how these variations are driven by social factors like poverty, education, and housing. Three important facts about small and midsize cities framed our work: Economic growth and recovery have been uneven among these cities. Local policymakers across these cities increasingly view health as a key issue. Although small and midsize cities are quite distinct from larger cities and rural areas, data specific to them are scant. We set out to better understand the wide variations in health across America’s small and midsize cities and how these variations are driven by social factors like poverty, education, and housing. Three important facts about small and midsize cities framed our work: Economic growth and recovery have been uneven among these cities. Local policymakers across these cities increasingly view health as a key issue. Although small and midsize cities are quite distinct from larger cities and rural areas, data specific to them are scant. We set out to better understand the wide variations in health across America’s small and midsize cities and how these variations are driven by social factors like poverty, education, and housing. Three important facts about small and midsize cities framed our work: Economic growth and recovery have been uneven among these cities. Local policymakers across these cities increasingly view health as a key issue. Although small and midsize cities are quite distinct from larger cities and rural areas, data specific to them are scant. With support from the Robert Wood Johnson Foundation, we have produced the first health-focused typology framework for small and midsize U.S. cities. The purpose is to enable municipal leaders and their partners to use comparative and small-area health and social data, identify local health trends, and develop effective policy approaches for building healthier cities. To create this framework, we undertook a rigorous categorization of 719 small and midsize cities—those with 2017 populations of 50,000 to 500,000—into discrete City Types grouped according to select sociodemographic and population characteristics, such as change in population since 2000, poverty rate, manufacturing employment, and income inequality. We identified 10 City Types (See Table 1 for detailed descriptions): Emerging Cities Small Stable-Size Cities Big Metro Exurbs Smaller Commuter Suburbs Diverse Ring Cities Latino-Predominant Enclaves Working Towns Regional Hubs Small Industrial-Legacy Cities College Cities In addition, we examined the social drivers of health in these City Types over time and uncovered sizable changes in indicators of health, equity, and well-being, including homicide rates, life expectancy, household poverty, and rent burden. In particular, we see that as racial and economic disparities widen over time, health disparities widen accordingly. Analysis based on City Type demonstrates how these patterns differ systematically across places; understanding of these variations can inform local policymaking decisions. Here are our key findings:
Region and proximity to bigger cities drive local socioeconomic disparities. Two City Types (Big Metro Exurbs, Diverse Ring Cities) are exclusively located around the country’s largest metropolitan areas: metro New York City, Los Angeles, and Chicago. High-poverty cities located near the largest U.S. cities tend to have better health outcomes compared to other peer cities with high poverty. This suggests the influence of big city economies and regional historical legacies on surrounding metro areas, in some cases lifting neighboring communities and in others likely blunting economic gains.

Cities are divided by economic and racial/ethnic measures, but wealth is concentrated in cities that are predominantly White. City Types tend to be predominantly high income or high poverty; only two City Types are primarily middle income (Smaller Commuter Suburbs and Working Towns). Additionally, four City Types have large Black or Latino populations (Diverse Ring Cities, Latino-Predominant Enclaves, Regional Hubs, and Small Industrial-Legacy Cities), while most remaining cities have large White majority populations. In nearly all cities, Black and Latino residents earned less than non-Hispanic Whites, on average, and this racial/ethnic wage gap increased slightly from 2000 to 2017.

Poverty, rent burden, and income inequality grew across all City Types. Poverty rate increases in small and midsize cities were consistent with national trends. Between 2000 and 2017, the percent of renters in small and midsize cities paying more than 30 percent of their annual income for rent became the majority. By 2017, Working Towns and Regional Hubs had considerably larger Black-White income gaps than other City Types; Black households earned 41 percent and 46 percent less than their White counterparts, respectively.

Health outcomes track closely with socioeconomic disparities most of the time. The three wealthiest City Types (Emerging Cities, Small Stable-Size Cities, and Big Metro Exurbs) consistently have the best outcomes for life expectancy, homicide, and cardiovascular disease mortality. The two City Types with large low-income and large Black populations (Regional Hubs and Small Industrial-Legacy Cities) consistently have, on average, the highest burden of disease and mortality. On average, these more impoverished City Types also have the greatest income inequality, with life expectancy gaps within each city averaging 10 years.

City leaders can leverage a broad array of policy and programmatic approaches targeting poverty and income inequality that will also advance health. Even within City Types, state and local policy levers can lead to differences in health outcomes. More nimble, localized policy can also equate to higher-quality services.

DEFINING SMALL AND MIDSIZE CITIES

This research defines small and midsize cities as those with populations of 50,000 to 500,000, based on 2017 American Community Survey five-year estimates. While cities with fewer than 50,000 residents likely fit into the framework, health-related data specific to such cities are difficult to acquire. And cities with more than 500,000 residents, which also share some characteristics with the cities in the population range of our study, tend to have greater resources and capacity.
For city leaders, the lessons from these findings are clear:

Equity must be addressed head-on. Cities can influence policies and programs that impact racial inequality, such as zoning, affordable housing, the composition of school districts, and policing.

Optimizing municipal autonomy and flexibility in the face of regional fiscal and policy constraints is critical to effective city leadership and action on health. For example, although increases in minimum wage have been shown to improve health among vulnerable Americans, 25 states prohibit cities from increasing the minimum wage. To support the adoption of new and purposeful approaches to advancing local health, local governance and authority must be respected and strengthened.

Building networks of peer cities that reflect shared characteristics beyond the usual state, regional, or population size groupings can drive new agenda-setting policies and improve well-being.

All the cities in this analysis (plus cities with populations over 500,000) may be found on the City Health Dashboard, where users can explore additional city-specific metrics of health and its drivers. The City Type designations are also available for download to facilitate their use in analysis.

To put the City Types framework into action, we recommend the following:

1. **Enhance access to granular health outcomes data.** The success of small and midsize cities in advancing health through tailored, data-driven policymaking relies on the availability of granular and timely health outcomes data. In addition, the development of novel approaches for gathering granular yet rigorously vetted data on a national scale, such as from electronic health records or other sources, must be accelerated.

2. **Use benchmarking to learn from peer cities.** Cities in the same City Type share important characteristics that affect not only local health outcomes, but also the applicability and adaptation of potential policy solutions. Importantly, cities can identify high performing “model peers” within their City Type and adapt successful policies and interventions from those peers to improve local residents’ health outcomes. City governments can use these results to benchmark the performance of their policy interventions against similar interventions in peer cities.

3. **Facilitate smarter investment.** Funders may use these results to inform investment strategies across the country. In addition, funders may be more prepared to fund an intervention in a city when that approach has proved successful in another city of the same Type. Importantly, the City Types framework provides city leaders with additional perspective as they set fiscal priorities for health initiatives.

As governments everywhere combat immediate and long-running health challenges, the City Types framework provides a data-driven foundation for sharpening understanding of small and midsize cities to inform local policy solutions that improve health and well-being.

Introduction

America’s small and midsize cities wrestle with many of the same health disparities that larger cities do. Yet while our biggest cities’ challenges are often in the national spotlight, America’s small and midsize cities are home to far more people, and their health disparities receive far less attention.

Cities in the United States are predominantly small and midsize. Only 10 U.S. cities have populations over one million, compared to 662 in China and 35 in Europe.

On the other hand, 719 have populations between 50,000 and 500,000. Yet smaller cities typically must address their health challenges with far fewer resources and less infrastructure than large cities do. They also serve as key drivers of regional economies and sociodemographic trends across the country.

We set out to better understand the wide variations in health across America’s small and midsize cities and how these variations are driven by social factors like poverty, education, and housing. With support from the Robert Wood Johnson Foundation, we have produced the first health-focused typology framework for small and midsize U.S. cities. The purpose is to enable municipal leaders and their partners to use comparative and small-area health and social data, identify local health trends, and develop effective policy approaches for building healthier cities.

Our focus is America’s cities, concentrating on the populations within city boundaries rather than the surrounding metropolitan areas. Cities offer an important unit of analysis due in part to the municipal structure and accountability that influences residents’ health and well-being through local policies and programs.

Three important facts about small and midsize cities framed our work:

- Economic growth and recovery have been uneven among these cities.
- Local policymakers across these cities increasingly view health as a key issue.
- Although small and midsize cities are quite distinct from larger cities and rural areas, data specific to them are scant.

Economic Growth and Recovery Are Uneven

Economic inequality has increased, both nationwide and in U.S. cities, since the 1970s. Just as wealthy and ultra-wealthy citizens account for an ever-greater share of income and assets, so too do the very large metros of New York, Chicago, and Los Angeles.

Indeed, the last two decades have seen the emergence of a new economic landscape characterized by the rise of “winner-take-all-

urbanism,” in which a handful of cities have captured the majority of innovation, wealth, and job creation. For example, in an in-depth analysis of the 10 largest and smallest metros areas in the Midwest and Southeast, researchers found that, between 2009 and 2015, private sector employment expanded nearly twice as fast and income increased 50 percent faster in areas with larger populations. There are certainly exceptions, with some smaller cities sustaining strong growth, particularly in “energy belt” states like Texas and Wyoming. But the broader landscape, even before the COVID-19 pandemic, is of many small and midsize cities struggling to recover from decades of economic and population declines.

Health Is a Defining Issue

In addition to economic distress, small and midsize cities are grappling with major health challenges. From high smoking and obesity rates in Shreveport, La., to low access to and use of healthcare services in Salinas, Calif., the human and economic toll of poor health is gaining prominence as a priority in many small and midsize cities. (See Figures 1 and 2.)

Indeed, nearly a decade ago, New York University partnered with the National Resource Network, a White House initiative established in 2012 that engaged over 50 cities in dire fiscal straits. Though we fully expected to hear that economic issues were the driving—if not sole—focus for most locales, we were struck to find health challenges, including chronic disease management and prevention, a top priority in many places, even though local stakeholders had little sense of where to turn for the granular data they needed to help drive action. The COVID-19 pandemic has further underscored the essential nature of public health preparedness and the vulnerability of local populations with higher rates of chronic disease.

Cities Are Unique but City-level Data Are Scant

Datasets on health outcomes that cover a large number of jurisdictions have, until recently, only been available at the state or county level. Yet, because city populations often differ in many ways from those of their states and counties, data at the city level are critical to informing and supporting policymaking in small and midsize cities. Similarly, many cities have lacked a framework for comparing the health and well-being of their cities with health outcomes data from similar cities across the country. Although some context-specific labels for cities are already in use—deindustrialized cities where economies have never recovered, “gateway cities” that welcome and support new immigrant and refugee populations, and wealthy exurbs—they are not typically derived from systematic, empirical research. This report presents a rigorously derived typology of small and midsize U.S. cities, with the primary goal of understanding city characteristics associated with health and health disparities. The City Types framework we developed illuminates how health outcomes and trends vary for cities both within the same Type and among Types, supporting local leaders in finding feasible and effective approaches to improving health and health equity.

FIGURE 1
Smoking in Shreveport, LA

City Value for Smoking in Shreveport, LA

24.3% of Shreveport’s adults reported smoking, compared to an average of 17.2% across the Dashboard cities.

City or census tract value

Dashboard-City Average

Present when value is better than Dashboard-City Average

Better Outcomes

FIGURE 2
Uninsured Rate in Salinas, CA

City Value for Uninsured in Salinas, CA

15.3% of Salinas’s population under age 65 were uninsured, compared to an average of 11% across the Dashboard cities.

City or census tract value

Dashboard-City Average

Present when value is better than Dashboard-City Average

Better Outcomes
Findings

The City Types Framework

The typology framework creates a foundation to explore characteristics of cities perhaps otherwise overlooked; these findings surface some of these characteristics. A total of 719 cities were sorted into each of 10 City Types, ranging in size from 14 to 143 cities (see Figure 5 and Appendix A). For a full description of the Methodology, see Appendix C.

By way of example, Figures 3 and 4 show the distributions of input variables for Emerging Cities and College Cities.

Region and proximity to bigger cities drive local socioeconomic disparities.

Geographic region was not a factor in creating the city categories, yet many City Types exhibited distinct geographic distributions. Two City Types (Big Metro Exurbs and Diverse Ring Cities) are exclusively located around the country’s largest metropolitan areas: metro New York City, Los Angeles, and Chicago. High-poverty cities located near the largest U.S. cities tend to have better health outcomes for life expectancy, homicide, and cardiovascular disease mortality. Another two City Types (Regional Hubs and Small Industrial-Legacy Cities) are located almost exclusively east of the Mississippi River and have, on average, the highest burden of disease and mortality. This is consistent with the impact that big-city economies have on surrounding metro areas,
Emerging Cities (n=50)
Small but fast-growing suburban cities, where residents tend to be wealthier than surrounding metro area and also commute outside the city.

Small Stable-Size Cities (n=140)
Small, wealthy suburban cities with stable population sizes.

Big Metro Exurbs (n=60)
Small, wealthy suburbs of the Big 3 metro areas (NYC, LA, Chicago).

Smaller Commuter Suburbs (n=143)
Middle-income, smaller-population cities, where most residents commute to jobs in the larger metro area.

Diverse Ring Cities (n=38)
Large minority population, particularly Latinos, and high-poverty cities around the Big 3 metro areas (NYC, LA and Chicago).
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latino-Predominant Enclaves</td>
<td>Lower-income cities in smaller metro areas, with large Hispanic/Latino populations.</td>
</tr>
<tr>
<td>Working Towns</td>
<td>Middle-income communities in small metro areas, where residents mostly work locally.</td>
</tr>
<tr>
<td>Regional Hubs</td>
<td>Midsize “micropolitan” cities that serve as a hub within smaller metro areas, with high inequality and large Black populations, where residents mostly work locally.</td>
</tr>
<tr>
<td>Small Industrial-Legacy Cities</td>
<td>Small post-industrial cities in medium population metro areas, with high poverty and large Black populations.</td>
</tr>
<tr>
<td>College Cities</td>
<td>Towns with large college populations, featuring all the benefits of productive anchor institutions and accompanying wealth disparities.</td>
</tr>
</tbody>
</table>
whether by lifting neighboring communities or by dividing economic gains in ways that foster disadvantage. The remaining cities were spread across the United States.

Cities are divided by economic and racial/ethnic measures, but wealth is concentrated in cities that are predominantly White.

The City Types consistently reflect economic polarization: Only two Types were primarily middle income (Smaller Commuter Suburbs and Working Towns), while the remaining Types were characterized either by concentrations of high-income residents or, as in half of the 10 Types, substantial concentrations of residents living below the federal poverty line (see Figure 6). These two middle-income Types included approximately one-third of the cities analyzed and were primarily located in smaller metropolitan areas spread across the country.

Additionally, the City Types capture city-level variations in racial/ethnic composition across the United States. Four City Types (Diverse Ring Cities, Latino-Predominant Enclaves, Regional Hubs, and Small Industrial-Legacy Cities) had large Black or Latino populations, while most of the remaining cities had populations characterized by large non-Hispanic White majorities. Regional Hubs and Small Industrial-Legacy Cities both had large non-Hispanic Black populations, with Regional Hub cities having more economic activity and lower rates of poverty than Small Industrial-Legacy Cities.

In nearly all cities, Black and Latino residents earn less than non-Hispanic whites, on average, and this racial/ethnic wage gap increased slightly from 2000 to 2017.

Poverty, rent burden, and income inequality increased across the board.

Reflecting national trends, the average citywide poverty rate across the 719 cities rose from 12.8 percent in 2000 to 15.6 percent in 2017. By City Type, the average increase in poverty rate ranged from 1 to 5 percentage points, with the magnitude of increase also varying across cities within each Type.

Rent burden also increased across all City Types (see Figure 7). Rent-burdened households are those paying more than 30 percent of their annual income in rent (including utilities and other associated costs). The proportion of rent-burdened households among all renters increased considerably for nearly all cities, from an overall average of 41 percent of renters in 2000 to 52 percent of renters in 2017. These findings reflect a challenge familiar to city leaders, with many residents naming rent burden and affordable housing among their top concerns. Though its impact is heaviest in low-income households, the increase in rent burden is widely felt; leaders in Shreveport, La., noted that over 50 percent of residents are considered rent-burdened, and over a quarter of those are middle and high income.

Income inequality between racial/ethnic groups also grew, on average, within small and midsize cities from 2000 to 2017. Compared to the 35 largest US cities (population >500,000), small and midsize cities have slightly lower poverty rates on average (16 percent, compared to 19 percent in large cities) and have proportionately fewer residents of color (36 percent identifying as Black or Latino, compared to 49 percent in large cities). For all 719 small and midsize cities, the median income for non-Hispanic Black residents in 2000 was 13 percent lower than that of non-Hispanic White households; by 2017 that gap
grew to 28 percent. The gap for Hispanic/Latino households relative to White households also grew, but at a slower rate (20 percent lower in 2000 to 23 percent lower in 2017). Across City Types, the average rate of change for racial income gaps was similar. By 2017, two City Types (Working Towns and Regional Hubs) had considerably larger Black-White income gaps than other City Types; Black households earned 41 percent and 46 percent less than their White counterparts, respectively.

Taken together, these results illustrate disturbing trends for small and midsize city residents. From 2000 to 2017, the percent of renters paying more than 30 percent of their annual income for rent became the majority, while the income gap separating non-Hispanic Black and Hispanic/Latino from non-Hispanic White households intensified.

Variation between and within City Types is depicted in figures like this, called boxplots. These reflect the variation within each City Type (along the y-axis), where each colored dot is a city, the middle vertical bar marks the midpoint value for that Type, the horizontal box represents the middle 50 percent of values for the cities in that Type, and the “whiskers” extending from the box show the full range.

If a box is small, it means there is little variation of that measure in that City Type. A wide box reflects greater variation. For instance, poverty rates are more similar among Small Stable-Size Cities, while they are very different for Regional Hubs, suggesting an interesting puzzle: What accounts for how differently poverty is distributed in these two City Types?
Health outcomes tracked closely with socioeconomic disparities most of the time.

There was considerable variation across City Types— and within cities in each Type—with respect to health outcomes. The health outcomes analyzed (life expectancy, homicide, and cardiovascular disease mortality) consistently followed a social gradient that favored wealthier and Whiter cities. Specifically, the three wealthiest City Types (Emerging Cities, Small Stable-Size Cities, and Big Metro Exurbs) consistently experienced the best outcomes with regard to life expectancy, homicide, and cardiovascular disease mortality, whereas the two City Types with large low-income and relatively large Black populations (Regional Hubs and Small Industrial-Legacy Cities) consistently experienced the highest burden of violence and mortality (see Figures 8, 9, 10). Latino-Predominant Enclaves experienced slightly above average rates of cardiovascular disease mortality, but this Type also had the largest variation. Miami Beach, Fla., had the lowest rate of 139.5 deaths per 100,000 population, and Hemet, Calif., had a rate of 515.2 per 100,000, the highest of this Type and all small and midsize cities.

Note: The mortality data used in this analysis are not released as micro-level downloadable datasets from NCHS/RDC, but as aggregated data tables whose analyses were conducted per NCHS disclosure requirements in a secure environment and released as approved output. The findings and conclusions in this report are those of the author(s) and do not represent the views of the Research Data Center, the National Center for Health Statistics, or the Centers for Disease Control and Prevention. NCHS does not recommend further analysis of this data because linking them to individually identifiable data from other NCHS or non-NCHS datasets could cause disclosure risks. If you believe a disclosure has occurred, please contact info@cityhealthdashboard.com and RDCA@cdc.gov.
Looking at homicide, Small Industrial-Legacy Cities experienced the highest average homicide rate of all City Types, but also the widest variation (see Figure 10). The range includes a homicide rate of 20.4 per 100,000 in Southfield, Miss., up to 558 per 100,000 in Gary, Ind., the highest of small and midsize cities, with Camden, N.J., and Flint, Mich., also in the top five.

Estimates of life expectancy were the only health outcome measure available at the census tract level that we examined. This level of granularity allowed us to analyze life expectancy at the neighborhood level. Here again we found a substantial degree of inequality within cities. Defining a city’s life expectancy gap as the difference between the neighborhood with the longest life expectancy and the neighborhood with the shortest life expectancy, the average city had a gap of seven years. But these gaps were smallest in the most economically privileged City Types, averaging six years for Emerging Cities, Small Stable-Size Cities, and Big Metro Exurbs, and largest in cities with the greatest income inequality and economic deprivation, averaging 10 years in Regional Hubs.

![Figure 10: Homicide Rate, 2015–2017](image)
Residents of the great majority of small and midsize cities faced ever-more challenging economic circumstances over the course of the study period (2000-2017).

The proportion of impoverished residents and those burdened by rent increased in every city type, regardless of the category’s median income. Rent burden is a significant driver of health, depleting resources available for health care, utilities, healthy food, and transportation.\(^5\)\(^6\) Excessive housing cost and its associated stress are also linked with poor mental health, particularly anxiety and depression.\(^7\) The increase in economic burden felt by city residents may reflect stagnant wages during this period, as well as the lingering impact of the 2007-2008 global financial crisis, which resulted in fiscal hardship for millions of city residents.\(^8\) The immense additional impact of COVID-19 will thus compound already deep and widespread challenges.

The legacy of racial segregation and ongoing impact of structural racism are starkly reflected in our analyses of small and midsize cities. The two City Types with the largest Black populations, Regional Hubs and Small Industrial-Legacy Cities, bore a disproportionate burden of poverty, mortality, and homicide. We found racial inequality in income to be nearly ubiquitous; the average non-Hispanic White household earned more than Latino or Black households in the vast majority of small and midsize cities. Racial income inequality not only persisted but grew, on average, over the 18-year study period.\(^9\)

Our findings reinforce understanding of the relationship between social conditions and health outcomes. For example, City Types with relatively high average poverty rates (Regional Hubs and Small Industrial-Legacy Cities) also had on average higher mean homicide rates, lower life expectancy, and higher cardiovascular disease mortality. There is some variation across Types. For example, Diverse Ring Cities have high mean poverty rates, yet health outcome measures in this Type compare favorably to outcomes in other high mean poverty Types (Regional Hubs and Small Industrial-Legacy Cities). This may reflect Diverse Ring Cities residents’ greater access to resources such as medical care and social programs. This difference could also reflect the health impacts of racism on Black populations\(^10\)\(^11\) because while Diverse Ring Cities, Regional Hubs and Small Industrial-Legacy Cities all have high mean poverty rates, residents of Regional Hubs and Small Industrial-Legacy Cities are predominantly Black.

What Do These Findings Mean for City Leaders?

First, equity must be addressed head-on. Cities can influence policies and programs that impact racial inequality, such as zoning, affordable housing, the composition of school districts, and policing. For example, policies to overturn

11 Williams, D.R. and Collins, C., 2016. Racial residential segregation: a fundamental cause of...
structurally racist practices that have long diminished the health of Black people must be fought for and prioritized.

Second, optimizing municipal autonomy and flexibility in the face of regional fiscal and policy constraints is critical to effective city leadership and action on health. Local leaders emphasized the impact of regional constraints on city policies, such as through state pre-emption policies or municipal government structures that reflect state and regional historical constructs. For example, although increases in minimum wage have been shown to improve health among vulnerable Americans, 25 states prohibit cities from increasing the minimum wage. To support the adoption of new and purposeful approaches to advancing health, local governance and authority must be respected and strengthened.

Lastly, building networks of peer cities that reflect shared characteristics beyond the usual state, regional, or population size groupings can drive new agenda-setting policies and improve well-being.

Policy Solutions as Levers for Improvement

Fortunately, city leaders may leverage a broad array of policy and programmatic approaches to target poverty and income inequality. Legislation to increase city-level minimum wage, municipal investment in affordable housing, and rent control and stabilization programs can reduce income disparities. Inclusive zoning, attention to the configuration of school districts, and changes in policing can diminish racial inequity. Universal pre-kindergarten education and improvements in elementary, middle, and high school success and completion rates can diminish the “achievement gap” and subsequent disparities in adulthood. GED programs, community workforce agreements, and job training initiatives can support people seeking employment. One model of cross-sector community innovation is Purpose Built Communities, an intensive, years- or decades-long intervention to combat intergenerational poverty that has been effective in helping economically deprived communities revitalize.

Anchor institutions, such as universities and hospitals, can also serve as local catalysts for community development and affordable housing. Kalamazoo, Mich., a College City, has recognized historic social and economic inequities resulting in ongoing health disparities. In recent years, local colleges and universities, along with hospitals, an active community foundation, and strong philanthropic, business, and nonprofit local actors, have engaged in developing policies to foster greater equity in their community. Other cities with strong anchor institutions (such as other College Cities) could adopt analogous approaches to addressing unequal resource distribution in their locales.

Urgent Need for Granular Data

Our analysis and report are limited by the currently available data. While we were able to compile and parse a robust body of data on social determinants of health, only scant health outcome data to permit assessment of trends over time were publicly and uniformly available for all the small and midsize cities in our sample.

Health outcomes data for small and midsize cities are difficult to obtain for many reasons. Access to some federal data is restricted because of privacy concerns. Some states, however, permit access to data that support detailed analysis of health trends in their small and midsize cities (e.g., the New Jersey State Health Assessment Data portal), a boon for efforts to equip local leaders to take informed action. We aim to continue acquiring health outcomes data and share further analysis and findings in the coming months.

Access to granular data, parsed to locally meaningful geographic boundaries (e.g., municipal, neighborhood, school district), is becoming increasingly essential to efforts across the country to advance population health and health equity. Small-area estimation techniques can also help improve understanding of local outcomes. As opportunities for change-making by small and midsize cities gather urgency and attention, federal and state health statistics systems must continue to drive innovation in increasing public access to health outcome data. Approaches to using administrative and other large-scale datasets (e.g., networks of electronic health records, city-level budget data) should be explored for surveillance and reporting purposes as well. Expanded access to timely local data, combined with enhanced local capacity to analyze such data, will advance understanding of small and midsize city health trends and help drive effective local actions for health and health equity improvement.

CASE STUDY

Rocky Mount, N.C. – Affordable Housing and Health

Rocky Mount, N.C., a Regional Hub, is a city of just over 55,000 residents, of whom over two-thirds are Black and almost 30 percent are White. A city center in an otherwise relatively rural region, Rocky Mount has faced high unemployment and aging infrastructure, leading city policymakers to focus on socioeconomic drivers, which in turn affect health outcomes. Affordable housing and gentrification are chief concerns, related to school closings in more impoverished parts of town, inequitable access to healthy foods, and displacement of seniors. While Rocky Mount is actively working on local policy solutions like voter referendums to expand affordable and workforce housing, state property taxes remain a barrier for homeownership.

But Rocky Mount’s micropolitan features are causing businesses and industries to take notice. Major industries and companies are investing in Rocky Mount and the “Twin Counties” by building new plants and production facilities. Rocky Mount has been part of a growth transition affecting all of North Carolina, but this progress must account for the current disparities. Rocky Mount plans to connect with other Regional Hub cities in and outside North Carolina to learn of other fiscal and preventative policies that can improve access to housing, with the goal of reducing local disparities in housing, education, and health.
Improving Health Versus “Changing Type”

In *The Death and Life of Great American Cities*, Jane Jacobs argued that urban planners needed to rethink how they identified so-called “slum” neighborhoods when targeting neighborhood redevelopment interventions. Jacobs argued that impoverished neighborhoods, frequent targets for redevelopment, often contain thriving communities that invest in their surroundings, support their neighbors, and take other actions that promote neighborhood and city health. These neighborhoods should not be judged poorly for their economic conditions, and the truth and lived experience of a place are more complicated than its economic indicators might suggest.

This framework must also be applied to our characterization of City Types. The goal of the present typology is not to encourage cities to attempt to move from one Type to another, or to characterize any City Type as “bad” or “worse” than another. Rather, the purpose of our analysis is to support cities in finding ways to improve the health and well-being of residents. The primary practical application of this analysis is to empower city leaders to identify, implement, evaluate, and improve the impact of policies that, in the context of what works in cities with similar characteristics, are likely to promote health and well-being in their cities.

Limitations and Cautions: This typology was created using secondary data with input from national advisors and from leaders in five cities. As such, the findings do not reflect local knowledge from most cities included in this report. Given this, the City Types are not meant to be exhaustive or deterministic, but instead should be used as a tool to guide conversation, innovation, and intervention. Local leaders should use the results of this report in combination with their deep local knowledge and expertise to guide public policy.
COVID-19 and City Types

What do we know about COVID-19 and the City Types? It’s important to acknowledge that this report was written before the coronavirus disease (COVID-19) began. As cities across the country respond to the health and economic impact of the pandemic, a new city-oriented COVID Local Risk Index, available on the City Health Dashboard, can help municipal leaders identify cities and neighborhoods with populations at higher risk of COVID-19 infection and more severe COVID-19 illness. The Index incorporates key risk factors of race and ethnicity, age, household crowding, low income, and underlying health conditions like diabetes and obesity, and assigns a score from 1 (low risk) to 10 (high risk), allowing comparison of cities and neighborhoods. The Index is only available for cities with population 66,000 and above, and analysis by City Type shows significant variation in the average scores of cities within each City Type, ranging from 2.6 among Small Stable-Size Cities to 9.7 among Small Industrial-Legacy Cities.

We also see child poverty and life expectancy following similar trends. For example, the average rate of children in poverty in Small Industrial-Legacy Cities is almost three times that of Small Stable-Size Cities, and the rank orders across City Types for COVID risk and poverty are almost identical. Similarly, there is substantial (6.3 year) variation in average city life expectancy between City Types, not dissimilar to the range in variation in COVID risk score (7.1), and the two City Types with the shortest average city life expectancies also have the two highest average city COVID Local Risk Index scores.

<table>
<thead>
<tr>
<th>City Type</th>
<th>Average City COVID Local Risk Index Score</th>
<th>Average City Children in Poverty (%)</th>
<th>Average City Life Expectancy (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Stable-Size Cities</td>
<td>2.6</td>
<td>13.1</td>
<td>81</td>
</tr>
<tr>
<td>College Cities</td>
<td>3.1</td>
<td>24.1</td>
<td>79.6</td>
</tr>
<tr>
<td>Emerging Cities</td>
<td>3.1</td>
<td>12.4</td>
<td>80.4</td>
</tr>
<tr>
<td>Big Metro Exurbs</td>
<td>3.3</td>
<td>13</td>
<td>81.5</td>
</tr>
<tr>
<td>Working Towns</td>
<td>5.8</td>
<td>27</td>
<td>77.9</td>
</tr>
<tr>
<td>Smaller Commuter Suburbs</td>
<td>6</td>
<td>24.3</td>
<td>78.6</td>
</tr>
<tr>
<td>Diverse Ring Cities</td>
<td>7.2</td>
<td>26.7</td>
<td>79.4</td>
</tr>
<tr>
<td>Latino-Predominant Enclaves</td>
<td>8</td>
<td>28.4</td>
<td>78.9</td>
</tr>
<tr>
<td>Regional Hubs</td>
<td>8.2</td>
<td>34.2</td>
<td>76.1</td>
</tr>
<tr>
<td>Small Industrial-Legacy Cities</td>
<td>9.7</td>
<td>36.9</td>
<td>75.2</td>
</tr>
</tbody>
</table>
Conclusions and Recommendations

At a time when safeguarding and improving health have never been more vital, the City Types framework offers policymakers and other leaders in small and midsize cities an essential perspective on trends and key issues in their communities.

City governments across the country are battling immediate and long-running health crises and planning for a drastically changing economic outlook. A review of the City Types analysis underscores the outsized role that poverty and historic structurally-racist practices play in driving health outcomes. As cities rebuild capacity in economic and health realms, specifically pursuing strategies that narrow racial and economic disparities will be fundamental to progress.

All the cities in this analysis (plus larger cities with populations over 500,000) may be found on the City Health Dashboard, where users can explore additional metrics of health and its drivers in each city. The City Type designations are available for download to facilitate their use in additional analyses.

Putting the City Types Framework into Action

1. **Enhance access to granular health outcomes data.** The success of small and midsize cities in advancing health through tailored, data-driven policymaking relies on the availability of granular and timely health outcomes data. Innovative approaches that safeguard privacy while improving specificity are needed. Some states have adopted approaches to releasing health outcome data for small and midsize cities while maintaining a commitment to privacy. Such practices must be evaluated for their generalizability. And the development of other novel approaches to gathering granular yet rigorously vetted data on a national scale, such as from electronic health records or other sources, must be accelerated.

2. **Learn from peer cities.** Cities in the same City Type share important characteristics that affect not only city-level health outcomes, but also the applicability and local tailoring of potential policy interventions. Importantly, cities can seek “model peers” within their City Type that perform particularly well on an outcome of interest or that do well overall, and work to emulate that city’s policies and interventions to improve local residents’ health outcomes. Evidence of success from other cities in the same City Type can also help strengthen the case for new policies.

3. **Benchmark to better understand policy performance.** City governments can use these results to benchmark the performance of their policy interventions against similar interventions in peer cities. For example, if a policy intervention performs well in Chicopee, Mass., but not as well in Sanford, Fla.— both
Smaller Commuter Suburbs—Sanford officials can use the typology to find the causes for this difference in performance. This is one of the primary benefits of benchmarking among peer cities within a City Type.

4. **Facilitate smarter investment.** Funders may use these results to inform investment strategies across the country. For example, homicide rates in Working Towns, Regional Hubs, and Smaller Industrial-Legacy Cities increased during the study period. Funders could target cities in these City Types for support with violence reduction initiatives. In addition, similar to the benchmarking described above, funders may be more prepared to fund an intervention in a particular city when that approach has proved successful in another city of the same Type. Importantly, the City Types framework provides city leaders with additional perspective as they set fiscal priorities for health initiatives.

America’s small and midsized cities can advance the health of their residents significantly in the decade ahead. By illuminating drivers of local and peer city outcomes, the City Types typology offers a valuable framework for supporting and refining the impact of local efforts to advance health and equity.
APPENDIX A

List of Cities in Each City Type

Emerging Cities (50 cities)
- Allen, Texas
- Ankeny, Iowa
- Avondale, Arizona
- Brentwood, California
- Buckeye, Arizona
- Cape Coral, Florida
- Castle Rock, Colorado
- Cedar Park, Texas
- Commerce City, Colorado
- Conroe, Texas
- Doral, Florida
- Dublin, California
- Eastvale, California
- Elk Grove, California
- Fishers, Indiana
- Frisco, Texas
- Georgetown, Texas
- Gilbert, Arizona
- Goodyear, Arizona
- Huntersville, North Carolina
- Kirkland, Washington
- Lake Elsinore, California
- League City, Texas
- Leesburg, Virginia
- Lehi, Utah
- Mansfield, Texas
- McKinney, Texas
- Menifee, California
- Meridian, Idaho
- Miramar, Florida
- Murrieta, California
- New Braunfels, Texas
- Noblesville, Indiana
- North Las Vegas, Nevada
- North Port, Florida
- O’Fallon, Missouri
- Palm Coast, Florida
- Parker, Colorado
- Pasco, Washington
- Pearland, Texas
- Pflugerville, Texas
- Port St. Lucie, Florida
- Rio Rancho, New Mexico
- Round Rock, Texas
- Sammamish, Washington
- San Ramon, California
- South Jordan, Utah
- Southaven, Mississippi
- Surprise, Arizona
- Temecula, California
- Broomfield, Colorado
- Camarillo, California
- Carlsbad, California
- Carmel, Indiana
- Carrollton, Texas
- Cary, North Carolina
- Centennial, Colorado
- Chandler, Arizona
- Chesapeake, Virginia
- Chino Hills, California
- Chino, California
- Clovis, California
- Coconut Creek, Florida
- Coon Rapids, Minnesota
- Coral Gables, Florida
- Coral Springs, Florida
- Corona, California
- Cranston, Rhode Island
- Cupertino, California
- Daly City, California
- Davie, Florida
- Eagan, Minnesota
- Eden Prairie, Minnesota
- Edina, Minnesota
- Edmond, Oklahoma
- Encinitas, California
- Euless, Texas
- Farmington Hills, Michigan
- Flower Mound, Texas
- Folsom, California
- Franklin, Tennessee
- Fremont, California
- Grapevine, Texas
- Greenwood, Indiana
- Henderson, Nevada
- Hendersonville, Tennessee

Small Stable-Size Cities (140)
Hillsboro, Oregon
Hoover, Alabama
Johns Creek, Georgia
Jupiter, Florida
Lakeville, Minnesota
Hayton, Utah
Lee's Summit, Missouri
Lenexa, Kansas
Livermore, California
Livonia, Michigan
Manteca, California
Maple Grove, Minnesota
Marysville, Washington
Medford, Massachusetts
Milford (balance), Connecticut
Milpitas, California
Minnetonka, Minnesota
Missouri City, Texas
Moore, Oklahoma
Mount Pleasant, South Carolina
Mountain View, California
Newton, Massachusetts
North Richland Hills, Texas
Novato, California
Novi, Michigan
Olathe, Kansas
Overland Park, Kansas
Palm Beach Gardens, Florida
Palo Alto, California
Parma, Ohio
Pembroke Pines, Florida
Peoria, Arizona
Petaluma, California
Plano, Texas
Plantation, Florida
Pleasanton, California
Plymouth, Minnesota
Port Orange, Florida
Rancho Cucamonga, California
Redmond, Washington
Redwood City, California
Richardson, Texas
Richland, Washington
Rochester Hills, Michigan
Rocklin, California
Rockville, Maryland
Roseville, California
Roswell, Georgia
Rowlett, Texas
Royal Oak, Michigan
San Marcos, California
San Mateo, California
Sandy Springs, Georgia
Sandy, Utah
Santa Clara, California
Santee, California
Scottsdale, Arizona
Shawnee, Kansas
Shoreline, Washington
Simi Valley, California
Smyrna, Georgia
Somerville, Massachusetts
South San Francisco, California
Sparks, Nevada
St. Charles, Missouri
St. Clair Shores, Michigan
St. Peters, Missouri
Sterling Heights, Michigan
Suffolk, Virginia
Sugar Land, Texas
Sunnyvale, California
Thornton, Colorado
Thousand Oaks, California
Tigard, Oregon
Tracy, California
Troy, Michigan
Union City, California
Vacaville, California
Walnut Creek, California
Warwick, Rhode Island
Waukesha, Wisconsin
Wellington, Florida
West Des Moines, Iowa
West Jordan, Utah
Westminster, Colorado
Weston, Florida
Weymouth Town, Massachusetts
Woodbury, Minnesota

Big Metro Exurbs (60)

Alhambra, California
Aliso Viejo, California
Arcadia, California
Arlington Heights, Illinois
Aurora, Illinois
Berwyn, Illinois
Bolingbrook, Illinois
Buena Park, California
Burbank, California
Carson, California
Cerritos, California
Clifton, New Jersey
Costa Mesa, California
Des Plaines, Illinois
Diamond Bar, California
Downey, California
Elgin, Illinois
Evanston, Illinois
Fountain Valley, California
Fullerton, California
Garden Grove, California
Glendale, California
Glendora, California
Hoboken, New Jersey
Hoffman Estates, Illinois
Huntington Beach, California
Irvine, California
Joliet, Illinois
La Habra, California
Laguna Niguel, California
Lake Forest, California
Lakewood, California
Mission Viejo, California
Monterey Park, California
Mount Prospect, Illinois
Naperville, Illinois
New Rochelle, New York
Newport Beach, California
Oak Lawn, Illinois
Oak Park, Illinois
Orange, California
Orland Park, Illinois
<table>
<thead>
<tr>
<th>Smaller Commuter Suburbs (143)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany, Oregon</td>
</tr>
<tr>
<td>Antioch, California</td>
</tr>
<tr>
<td>Apple Valley, California</td>
</tr>
<tr>
<td>Appleton, Wisconsin</td>
</tr>
<tr>
<td>Arlington, Texas</td>
</tr>
<tr>
<td>Auburn, Washington</td>
</tr>
<tr>
<td>Aurora, Colorado</td>
</tr>
<tr>
<td>Baytown, Texas</td>
</tr>
<tr>
<td>Beaverton, Oregon</td>
</tr>
<tr>
<td>Bethlehem, Pennsylvania</td>
</tr>
<tr>
<td>Boynton Beach, Florida</td>
</tr>
<tr>
<td>Bradenton, Florida</td>
</tr>
<tr>
<td>Bristol, Connecticut</td>
</tr>
<tr>
<td>Brockton, Massachusetts</td>
</tr>
<tr>
<td>Brooklyn Park, Minnesota</td>
</tr>
<tr>
<td>Burien, Washington</td>
</tr>
<tr>
<td>Burlington, North Carolina</td>
</tr>
<tr>
<td>Burnsville, Minnesota</td>
</tr>
<tr>
<td>Chicopee, Massachusetts</td>
</tr>
<tr>
<td>Citrus Heights, California</td>
</tr>
<tr>
<td>Clearwater, Florida</td>
</tr>
<tr>
<td>Concord, California</td>
</tr>
<tr>
<td>Concord, North Carolina</td>
</tr>
<tr>
<td>Council Bluffs, Iowa</td>
</tr>
<tr>
<td>Danbury, Connecticut</td>
</tr>
<tr>
<td>Dearborn Heights, Michigan</td>
</tr>
<tr>
<td>Dearborn, Michigan</td>
</tr>
<tr>
<td>Deerfield Beach, Florida</td>
</tr>
<tr>
<td>Delray Beach, Florida</td>
</tr>
<tr>
<td>Deltona, Florida</td>
</tr>
<tr>
<td>DeSoto, Texas</td>
</tr>
<tr>
<td>El Cajon, California</td>
</tr>
<tr>
<td>Elyria, Ohio</td>
</tr>
<tr>
<td>Escondido, California</td>
</tr>
<tr>
<td>Everett, Washington</td>
</tr>
<tr>
<td>Fairfield, California</td>
</tr>
<tr>
<td>Fall River, Massachusetts</td>
</tr>
<tr>
<td>Federal Way, Washington</td>
</tr>
<tr>
<td>Florissant, Missouri</td>
</tr>
<tr>
<td>Fort Myers, Florida</td>
</tr>
<tr>
<td>Frederick, Maryland</td>
</tr>
<tr>
<td>Gaithersburg, Maryland</td>
</tr>
<tr>
<td>Garland, Texas</td>
</tr>
<tr>
<td>Gastonia, North Carolina</td>
</tr>
<tr>
<td>Glendale, Arizona</td>
</tr>
<tr>
<td>Grand Prairie, Texas</td>
</tr>
<tr>
<td>Gresham, Oregon</td>
</tr>
<tr>
<td>Hamilton, Ohio</td>
</tr>
<tr>
<td>Haverhill, Massachusetts</td>
</tr>
<tr>
<td>Hayward, California</td>
</tr>
<tr>
<td>High Point, North Carolina</td>
</tr>
<tr>
<td>Highland, California</td>
</tr>
<tr>
<td>Hollywood, Florida</td>
</tr>
<tr>
<td>Independence, Missouri</td>
</tr>
<tr>
<td>Irving, Texas</td>
</tr>
<tr>
<td>Kansas City, Kansas</td>
</tr>
<tr>
<td>Kenner, Louisiana</td>
</tr>
<tr>
<td>Kennewick, Washington</td>
</tr>
<tr>
<td>Kenosha, Wisconsin</td>
</tr>
<tr>
<td>Kent, Washington</td>
</tr>
<tr>
<td>Kentwood, Michigan</td>
</tr>
<tr>
<td>Kettering, Ohio</td>
</tr>
<tr>
<td>Killeen, Texas</td>
</tr>
<tr>
<td>La Mesa, California</td>
</tr>
<tr>
<td>Lakewood, Colorado</td>
</tr>
<tr>
<td>Lakewood, Ohio</td>
</tr>
<tr>
<td>Lakewood, Washington</td>
</tr>
<tr>
<td>Lancaster, Pennsylvania</td>
</tr>
<tr>
<td>Largo, Florida</td>
</tr>
<tr>
<td>Lewisville, Texas</td>
</tr>
<tr>
<td>Lodi, California</td>
</tr>
<tr>
<td>Longmont, Colorado</td>
</tr>
<tr>
<td>Lorain, Ohio</td>
</tr>
<tr>
<td>Loveland, Colorado</td>
</tr>
<tr>
<td>Lowell, Massachusetts</td>
</tr>
<tr>
<td>Lynn, Massachusetts</td>
</tr>
<tr>
<td>Malden, Massachusetts</td>
</tr>
<tr>
<td>Manchester, New Hampshire</td>
</tr>
<tr>
<td>Margate, Florida</td>
</tr>
<tr>
<td>Marietta, Georgia</td>
</tr>
<tr>
<td>Melbourne, Florida</td>
</tr>
<tr>
<td>Meriden, Connecticut</td>
</tr>
<tr>
<td>Mesa, Arizona</td>
</tr>
<tr>
<td>Mesquite, Texas</td>
</tr>
<tr>
<td>Midwest City, Oklahoma</td>
</tr>
<tr>
<td>Millcreek, Utah</td>
</tr>
<tr>
<td>Nampa, Idaho</td>
</tr>
<tr>
<td>Nashua, New Hampshire</td>
</tr>
<tr>
<td>New Bedford, Massachusetts</td>
</tr>
<tr>
<td>New Britain, Connecticut</td>
</tr>
<tr>
<td>Norwalk, Connecticut</td>
</tr>
<tr>
<td>Oceanside, California</td>
</tr>
<tr>
<td>Orem, Utah</td>
</tr>
<tr>
<td>Palm Bay, Florida</td>
</tr>
<tr>
<td>Palm Desert, California</td>
</tr>
<tr>
<td>Pawtucket, Rhode Island</td>
</tr>
<tr>
<td>Peabody, Massachusetts</td>
</tr>
<tr>
<td>Pinellas Park, Florida</td>
</tr>
<tr>
<td>Pittsburg, California</td>
</tr>
<tr>
<td>Pompano Beach, Florida</td>
</tr>
<tr>
<td>Quincy, Massachusetts</td>
</tr>
<tr>
<td>Racine, Wisconsin</td>
</tr>
<tr>
<td>Rancho Cordova, California</td>
</tr>
<tr>
<td>Redlands, California</td>
</tr>
<tr>
<td>Renton, Washington</td>
</tr>
<tr>
<td>Revere, Massachusetts</td>
</tr>
<tr>
<td>Richmond, California</td>
</tr>
<tr>
<td>Rock Hill, South Carolina</td>
</tr>
<tr>
<td>Rogers, Arkansas</td>
</tr>
</tbody>
</table>
San Buenaventura, California
San Leandro, California
San Rafael, California
Sanford, Florida
Schenectady, New York
Spokane Valley, Washington
Springfield, Oregon
Stamford, Connecticut
Sunrise, Florida
Tacoma, Washington
Tamarac, Florida
Taunton, Massachusetts
Taylor, Michigan
Taylorsville, Utah
Turlock, California
Upland, California
Vallejo, California
Vancouver, Washington
Vineland, New Jersey
Vista, California
Waltham, Massachusetts
Warner Robins, Georgia
Warren, Michigan
Waterbury, Connecticut
Waukegan, Illinois
West Allis, Wisconsin
West Haven, Connecticut
West Palm Beach, Florida
West Sacramento, California
West Valley City, Utah
Westland, Michigan
Woodland, California
Wyoming, Michigan
Yucaipa, California

East Orange, New Jersey
El Monte, California
Elizabeth, New Jersey
Gardena, California
Hammond, Indiana
Hawthorne, California
Hempstead, New York
Huntington Park, California
Inglewood, California
Jersey City, New Jersey
Lancaster, California
Long Beach, California
Lynwood, California
Montebello, California
Mount Vernon, New York
New Brunswick, New Jersey
Newark, New Jersey
Norwalk, California
Palmdale, California
Paramount, California
Passaic, New Jersey
Paterson, New Jersey
Perth Amboy, New Jersey
Pico Rivera, California
Plainfield, New Jersey
Pomona, California
Rosemead, California
Santa Ana, California
South Gate, California
Union City, New Jersey
West New York, New Jersey
Yonkers, New York
Delano, California
Edinburg, Texas
Fontana, California
Gilroy, California
Hanford, California
Harlingen, Texas
Hemet, California
Hesperia, California
Hialeah, Florida
Homestead, Florida
Indio, California
Jurupa Valley, California
Kissimmee, Florida
Laredo, Texas
Lawrence, Massachusetts
Madera, California
McAllen, Texas
Merced, California
Miami Beach, Florida
Miami, Florida
Mission, Texas
Moreno Valley, California
National City, California
Ontario, California
Oxnard, California
Pasadena, Texas
Perris, California
Pharr, Texas
Porterville, California
Reading, Pennsylvania
Rialto, California
Riverside, California
Salinas, California
San Bernardino, California
Santa Maria, California
Springdale, Arkansas
Tulare, California
Victorville, California
Watsonville, California

Diverse Ring Cities (38)

Anaheim, California
Baldwin Park, California
Bayonne, New Jersey
Bellflower, California
Cicero, Illinois
Compton, California

Latino-Predominant Enclaves (46)

Allentown, Pennsylvania
Brownsville, Texas
Caldwell, Idaho
Casa Grande, Arizona
Cathedral City, California
Chula Vista, California
Colton, California

City Types for Improving Health and Equity
Working Towns (117)

Abilene, Texas
Amarillo, Texas
Anchorage, Alaska
Asheville, North Carolina
Bakersfield, California
Battle Creek, Michigan
Bend, Oregon
Billings, Montana
Bismarck, North Dakota
Bloomington, Illinois
Boise City, Idaho
Bossier City, Louisiana
Bryan, Texas
Carson City, Nevada
Casper, Wyoming
Cedar Rapids, Iowa
Charleston, South Carolina
Cheyenne, Wyoming
Clarksville, Tennessee
Colorado Springs, Colorado
Conway, Arkansas
Corpus Christi, Texas
Davenport, Iowa
Decatur, Alabama
Decatur, Illinois
Des Moines, Iowa
Dothan, Alabama
Dubuque, Iowa
Duluth, Minnesota
Eau Claire, Wisconsin
Elkhart, Indiana
Enid, Oklahoma
Eugene, Oregon
Evansville, Indiana
Fargo, North Dakota
Fort Smith, Arkansas
Fort Wayne, Indiana
Grand Island, Nebraska
Grand Junction, Colorado
Great Falls, Montana
Greeley, Colorado
Green Bay, Wisconsin
Greenville, South Carolina
Idaho Falls, Idaho
Jacksonville, North Carolina
Janesville, Wisconsin
Johnson City, Tennessee
Jonesboro, Arkansas
Joplin, Missouri
Kingsport, Tennessee
Kokomo, Indiana
Lafayette, Indiana
Lafayette, Louisiana
Lake Havasu City, Arizona
Lakeland, Florida
Las Cruces, New Mexico
Lawton, Oklahoma
Lexington-Fayette, Kentucky
Lincoln, Nebraska
Longview, Texas
Lubbock, Texas
Madison, Wisconsin
Medford, Oregon
Midland, Texas
Missoula, Montana
Modesto, California
Murfreesboro, Tennessee
Napa, California
Ocala, Florida
Odessa, Texas
Ogden, Utah
Omaha, Nebraska
Orlando, Florida
Oshkosh, Wisconsin
Owensboro, Kentucky
Pocatello, Idaho
Portland, Maine
Pueblo, Colorado
Raleigh, North Carolina
Rapid City, South Dakota
Redding, California
Reno, Nevada
Rochester, Minnesota
Sacramento, California
Salem, Oregon
Salt Lake City, Utah
San Angelo, Texas
Santa Barbara, California
Santa Fe, New Mexico
Santa Rosa, California
Sarasota, Florida
Scranton, Pennsylvania
Sioux City, Iowa
Sioux Falls, South Dakota
Spokane, Washington
Springfield, Illinois
Springfield, Missouri
St. Cloud, Minnesota
St. George, Utah
St. Joseph, Missouri
St. Peters, Florida
Stockton, California
Tempe, Texas
Terre Haute, Indiana
Topeka, Kansas
Tulsa, Oklahoma
Tyler, Texas
Victoria, Texas
Virginia Beach, Virginia
Visalia, California
Waterloo, Iowa
Wichita Falls, Texas
Wichita, Kansas
Wilmington, North Carolina
Yakima, Washington
Yuba City, California
Yuma, Arizona

Regional Hubs (71)

Akron, Ohio
Albany, Georgia
Albany, New York
Anderson, Indiana
Atlanta, Georgia
Augusta-Richmond County, Georgia
Baton Rouge, Louisiana
Beaumont, Texas
Birmingham, Alabama
<table>
<thead>
<tr>
<th>City Types for Improving Health and Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Industrial-Legacy Cities (14)</td>
</tr>
<tr>
<td>Bridgeport, Connecticut</td>
</tr>
<tr>
<td>Camden, New Jersey</td>
</tr>
<tr>
<td>Flint, Michigan</td>
</tr>
<tr>
<td>Gary, Indiana</td>
</tr>
<tr>
<td>Hartford, Connecticut</td>
</tr>
<tr>
<td>Lauderdale, Florida</td>
</tr>
<tr>
<td>Miami Gardens, Florida</td>
</tr>
<tr>
<td>North Miami, Florida</td>
</tr>
<tr>
<td>Pontiac, Michigan</td>
</tr>
<tr>
<td>Southfield, Michigan</td>
</tr>
<tr>
<td>Stonecrest, Georgia</td>
</tr>
<tr>
<td>Trenton, New Jersey</td>
</tr>
<tr>
<td>Wilmington, Delaware</td>
</tr>
<tr>
<td>Youngstown, Ohio</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>College Cities (40)</td>
</tr>
<tr>
<td>Ames, Iowa</td>
</tr>
<tr>
<td>Ann Arbor, Michigan</td>
</tr>
<tr>
<td>Athens-Clarke County, Georgia</td>
</tr>
<tr>
<td>Auburn, Alabama</td>
</tr>
<tr>
<td>Bellingham, Washington</td>
</tr>
<tr>
<td>Berkeley, California</td>
</tr>
<tr>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Boulder, Colorado</td>
</tr>
<tr>
<td>Bowling Green, Kentucky</td>
</tr>
<tr>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Champaign, Illinois</td>
</tr>
<tr>
<td>Chapel Hill, North Carolina</td>
</tr>
<tr>
<td>Chico, California</td>
</tr>
<tr>
<td>College Station, Texas</td>
</tr>
<tr>
<td>Columbia, Missouri</td>
</tr>
<tr>
<td>Corvallis, Oregon</td>
</tr>
<tr>
<td>Davis, California</td>
</tr>
<tr>
<td>Denton, Texas</td>
</tr>
<tr>
<td>Fayetteville, Arkansas</td>
</tr>
<tr>
<td>Flagstaff, Arizona</td>
</tr>
<tr>
<td>Fort Collins, Colorado</td>
</tr>
<tr>
<td>Gainesville, Florida</td>
</tr>
<tr>
<td>Grand Forks, North Dakota</td>
</tr>
<tr>
<td>Greenville, North Carolina</td>
</tr>
<tr>
<td>Harrisonburg, Virginia</td>
</tr>
<tr>
<td>Iowa City, Iowa</td>
</tr>
<tr>
<td>Kalamazoo, Michigan</td>
</tr>
<tr>
<td>La Crosse, Wisconsin</td>
</tr>
<tr>
<td>Lawrence, Kansas</td>
</tr>
<tr>
<td>Lynchburg, Virginia</td>
</tr>
<tr>
<td>Manhattan, Kansas</td>
</tr>
<tr>
<td>Muncie, Indiana</td>
</tr>
<tr>
<td>Normal, Illinois</td>
</tr>
<tr>
<td>Norman, Oklahoma</td>
</tr>
<tr>
<td>Provo, Utah</td>
</tr>
<tr>
<td>San Marcos, Texas</td>
</tr>
<tr>
<td>Santa Cruz, California</td>
</tr>
<tr>
<td>Tallahassee, Florida</td>
</tr>
<tr>
<td>Tempe, Arizona</td>
</tr>
<tr>
<td>Tuscaloosa, Alabama</td>
</tr>
</tbody>
</table>

Buffalo, New York
Canton, Ohio
Chattanooga, Tennessee
Cincinnati, Ohio
Cleveland, Ohio
Columbia, South Carolina
Columbus, Georgia
Dayton, Ohio
Daytona Beach, Florida
Durham, North Carolina
Erie, Pennsylvania
Fayetteville, North Carolina
Fort Lauderdale, Florida
Grand Rapids, Michigan
Greensboro, North Carolina
Gulfport, Mississippi
Hampton, Virginia
Huntsville, Alabama
Jackson, Mississippi
Jackson, Tennessee
Kansas City, Missouri
Knoxville, Tennessee
Lake Charles, Louisiana
Lansing, Michigan
Little Rock, Arkansas
Macon-Bibb County, Georgia
Minneapolis, Minnesota
Mobile, Alabama
Montgomery, Alabama
New Haven, Connecticut
New Orleans, Louisiana
Newport News, Virginia
Norfolk, Virginia
North Charleston, South Carolina
North Little Rock, Arkansas
Oakland, California
Pensacola, Florida
Peoria, Illinois
Pittsburgh, Pennsylvania
Port Arthur, Texas
Portsmouth, Virginia
Providence, Rhode Island
Richmond, Virginia
Roanoke, Virginia
Rochester, New York
Rockford, Illinois
Rocky Mount, North Carolina
Savannah, Georgia
Shreveport, Louisiana
South Bend, Indiana
Springfield, Massachusetts
Springfield, Ohio
St. Louis, Missouri
St. Paul, Minnesota
Syracuse, New York
Tampa, Florida
Toledo, Ohio
Utica, New York
Valdosta, Georgia
Waco, Texas
Winston-Salem, North Carolina
Worcester, Massachusetts
APPENDIX B

Typology Analysis – Distribution of Input Variables for Each City Type

Emerging Cities

Big Metro Exurbs

Small Stable-Size Cities

Smaller Commuter Suburbs
Small Industrial-Legacy Cities

College Cities

Appendix B: Typology Analysis
APPENDIX C

Methodology

Using a joint quantitative and qualitative approach, we iteratively confirmed our analytical findings with city leaders and national researchers to ensure actionable outcomes of the typology.

Quantitative Approach

We created a list of all small and midsize U.S. cities, defined as cities with populations ranging from 50,000 to 500,000, based on 2017 American Community Survey (ACS) five-year estimates, using the census category of “incorporated places,” which corresponds to the jurisdictions of general-purpose municipal governments.\(^\text{15}\)

To develop the typology, we again used 2017 ACS data and, for historical variables, 2000 decennial census data, to create a dataset of city economic and socio-demographic characteristics. We selected variables that key stakeholders (city leaders, urban experts) deemed important to themselves and their peers. These variables are relatively unmodifiable by policy over the short or medium term to support comparisons of policy environments in cities that are grouped together despite having different health outcomes. This helps data users isolate the drivers, especially policy drivers, contributing to local health outcomes.

Using a method called latent profile analysis, we categorized cities into 10 distinct categories—enough to provide granular distinctions but not so many as to be excessively fragmenting—based on 11 variables. The variables included in the final analysis (based on 2017 data unless otherwise noted) were:

1. Population of the city
2. Population of the city’s broader metropolitan area
3. Percentage change in city population (2000 to 2017)
4. Percentage point change in city residents employed in the manufacturing sector (2000 to 2017)
5. Percentage of resident workers in the city who commute outside of the city for work
6. Percentage of city population that is non-Hispanic Black\(^\text{16}\)
7. Percentage of city population that is Hispanic/Latino\(^\text{17}\)
8. Percentage of city population, age ≥ 15, currently attending college
9. Percentage of city population living below the federal poverty level
10. Percentage of city households earning ≥ $125,000 per year
11. Ratio of the city residents’ median income to that of residents in the entire metropolitan area

\(^\text{15}\) Following prior work by the Centers for Disease Control and Prevention (CDC), we additionally included two counties: Honolulu, Hawaii and Macon-Bibb County, Georgia, because both function as municipal governments. See https://www.nlc.org/list-of-consolidated-city-county-governments.

\(^\text{16}\) In nearly half the small and midsize cities we analyzed, people of color make up a majority of the population. The largest racial/ethnic groups were non-Hispanic White, non-Hispanic Black, and Hispanic/Latino. We recognize that non-Hispanic Black and Hispanic/Latino designations, as census categories, do not fully capture the cultural and social identities of these population groups. A small number of cities had substantial populations of Asian Americans, Native Hawaiians/Pacific Islanders, American Indians/Alaska Natives, and people identifying as more than one race. On average, however, these categories were less than 10 percent of city populations when combined. We did not include these groups in the typology analysis due to their small sizes and unequal distributions between cities.

\(^\text{17}\) Ibid.
We additionally looked at the Gini coefficient (a measure of income inequality) as a descriptive measure to better understand the City Type categories. The Gini coefficient, which ranges from 0 (complete equality) to 1 (complete inequality), was not an input in the latent profile analysis, however.

The City Types were then used as units of analysis to better understand the distribution of social determinants and health outcomes within and between City Types. We created an additional dataset with variables from the census (percent of city population living below the federal poverty level, percentage point change in poverty rate from 2000 to 2017, and percent of renting households that pay ≥30 percent of income on rent), CDC census tract-level estimates of life expectancy, and FBI Uniform Crime Report data on homicides. For a subset of the cities in the range of 66,000 to 500,000 population, we included CDC cardiovascular disease mortality data from the City Health Dashboard.

Qualitative Approach

It would be an empty exercise to develop a typology for American cities without collaborating closely with local leaders and practitioners. Drawing on relationships with many city and community leaders, as well as “bridging partners,” including the National Resource Network, National League of Cities and the International City/County Management Association, we achieved such collaboration. This typology analysis and report reflect this inclusive and participatory process, with the establishment of a national advisory committee complemented by consultative partnerships with five cities.

The advisory committee—representing local government member organizations, federal policymakers, and scholars—convened to discuss broader policy implications and potential benefits of the typology initiative. Through group conference calls and one-on-one interviews, these partners provided high-level feedback and input on the categories overall and on how they may or may not translate to city stakeholders. They also reflected on how the typology might work in practice through their own ongoing multi-city engagements.

We also engaged with five cities: Kalamazoo, Mich.; Rocky Mount, N.C.; Salinas, Calif.; Shreveport, La.; and Trenton, N.J. In selecting these partner cities, we applied two criteria: diversity and commitment. Regarding diversity, we looked for cities with varying population sizes, governance structures (e.g., city manager vs. strong mayor), geographic locations, demographics, poverty rates, and health challenges. Next, we sought cities committed to improving health outcomes. After selecting a city, we spoke with a range of its leaders and policy actors, including the chief executive (e.g., mayor), health and other city administrators, community leaders, and hospital administrators. We spoke with city stakeholders individually and in groups to gain their on-the-ground input in guiding typology development and in considering the typology’s practical implications.

Critical input from these qualitative discussions used to inform the analysis included:

Neighborhood Data: Citywide generalizations about populations and socioeconomic factors do not capture more granular neighborhood disparities. City leaders appreciated having data that extended from the state and county level to their municipalities. But they were often keen for neighborhood-level analysis as well to get the fullest possible understanding of actionable root causes.

Policy Context: Local and state policy environments can be critical when considering and comparing health improvement approaches available to disparate cities, and when tracking cities’ health status and related trends. For example, some states have a history of providing more local flexibility when it comes to Medicaid spending and policy reform generally; others are far more restrictive. Some counties have a tradition of working closely with municipal governments; others do not. The advisory committee recommended that our analysis be complemented by an intergovernmental and policy environment analysis to fairly gauge what reforms are possible and where.

Appendix C: Methodology
Anchor Institutions: Cities and regions have long histories of sociodemographic change influenced by businesses and industries, universities, and other organizations. These local anchor institutions impact population trends through factories closures, hospital expansions, agricultural seasonal growth, and university development. Such dynamics can take generations and are important factors when considering city-level trends in health and its policy and socioeconomic drivers.

Comparative Data: Cities see value in benchmarking and comparing themselves to other cities with similar policy environments (e.g., within the same state) and comparable demographic profiles. When asked about peer comparisons, four of the five partner cities said trends within the same state were the most immediately relevant. We had assumed that cities would gravitate to peers across state lines whose health issues aligned most closely with their own, but we heard that in-state comparisons are often the most useful for building policy rationale.
Credits

NYU Grossman School of Medicine &
NYU Wagner Graduate School of Public Service
180 Madison Ave, New York, NY 10016
info@cityhealthdashboard.com

Lead Authors: Neil Kleiman, PhD; Justin Feldman, ScD, MPH; Becky Ofrane, MPH; Benjamin Spoer, PhD, MPH; Lorna Thorpe, PhD, MPH; Marc N. Gourevitch, MD, MPH

Recommended Citation: NYU Langone Health, Department of Population Health. City Types for Improving Health and Equity: Understanding America's Small and Midsize Cities. 2020.

This analysis and report would not be possible without the following contributors:

Research Support: Sarah Conderino, Samantha Breslin, Alexia Nazarian, Taylor Lampe, Miriam Gofine, Peggy Hsieh, Leena Abbas, Shoshanna Levine

Advisory Committee: Lavea Brachman, MCP, JD; Dante Chinni; David Eichenthal, JD; Josh Franzel, PhD; Ned Hill, MCP, PhD; David Hochman, MBA; Peter Holtgrave, MA, MPH; Jana Lynott, AICP, MP; Zach Markovits, MPP; Paul Mattessich, PhD; Sue Polis; Steven Woolf, MD, MPH

City Partners: Shakira Abdul-Ali, Holly Alesbury, Lisa Brinton, Brandon Fail, Shanerika Flemings, Chaunta Mero, Natasha Hampton, Kenneth Hunter, Megan Hunter, Catherine Kothari, Paige Kyle, Laura Lam, Yoshi Manale, Bonnie Moore, Nikki Mosgrove, Gregory Paulson, Adrian Perkins, Julia Taylor

Robert Wood Johnson Foundation: George Hobor, PhD; Abbey Cofsky, MPH

Communications and Website: Burness, Forum One, Sasha Walek

www.CityHealthDashboard.com/CityTypes