Carlos E. Restrepo is Adjunct Professor of Urban Planning at NYU Wagner. His main areas of research and teaching include environmental quality and public health, environmental justice, sustainable urban development, resilience, and environmental policy. He has worked on projects related to infrastructure and environmental quality that were funded by the U.S. Environmental Protection Agency, Department of Homeland Security, Department of Transportation and other agencies. Dr. Restrepo’s research has been presented at numerous professional conferences including the annual meetings of the American Association for Aerosol Research (AAAR), the Society for Risk Analysis (SRA), the Association of American Geographers (AAG) and the Institute for Operations Research and the Management Sciences (INFORMS). In addition, his work has been published as book chapters and in peer-reviewed journals, including the Journal of Risk Research, Atmospheric Environment and the Journal of Environmental Protection.
Dr. Restrepo has a PhD in Public Administration from NYU's Wagner Graduate School of Public Service. His dissertation topic was the association between asthma hospitalizations and air pollution in New York City. Before coming to NYU, Carlos worked for three years in El Salvador as a policy analyst for FUSADES, a non-profit organization, and worked in environmental, energy, telecommunications, and science and technology policy studies. He holds a B.S. in Engineering Physics from Lehigh University, and a M.S. in International Development and Appropriate Technology from the University of Pennsylvania.
This course examines the social, economic and environmental dimensions of sustainable urban development. Some of the major themes explored include indicators of sustainability, urban demographic trends, environmental justice, green building, urban sprawl, sustainable energy and transportation, and global climate change. In addition, the role of information technology (IT) and social networks is discussed in the context of promoting ideas globally about sustainable development.
This course examines the social, economic and environmental dimensions of sustainable urban development. Some of the major themes explored include indicators of sustainability, urban demographic trends, environmental justice, green building, urban sprawl, sustainable energy and transportation, and global climate change. In addition, the role of information technology (IT) and social networks is discussed in the context of promoting ideas globally about sustainable development.
This course examines the social, economic and environmental dimensions of sustainable urban development. Some of the major themes explored include indicators of sustainability, urban demographic trends, environmental justice, green building, urban sprawl, sustainable energy and transportation, and global climate change. In addition, the role of information technology (IT) and social networks is discussed in the context of promoting ideas globally about sustainable development.
This course examines the social, economic and environmental dimensions of sustainable urban development. Some of the major themes explored include indicators of sustainability, urban demographic trends, environmental justice, green building, urban sprawl, sustainable energy and transportation, and global climate change. In addition, the role of information technology (IT) and social networks is discussed in the context of promoting ideas globally about sustainable development.
This course examines the social, economic and environmental dimensions of sustainable urban development. Some of the major themes explored include indicators of sustainability, urban demographic trends, environmental justice, green building, urban sprawl, sustainable energy and transportation, and global climate change. In addition, the role of information technology (IT) and social networks is discussed in the context of promoting ideas globally about sustainable development.
2019
2015
2014
Extreme events of all kinds are increasing in number, severity, or impacts. Transportation provides a vital support service for people in such circumstances in the short-term for evacuation and providing supplies where evacuation is not undertaken, yet, transportation services are often disabled in disasters. Nationwide and in New York and New Jersey record-setting weather disasters have occurred and are expected to continue. Disadvantaged populations are particularly vulnerable. Network theories provide insights into vulnerability and directions for adaptation by defining interconnections, such as multi-modality. Multi-modal connectivity provides passenger flexibility and reduces risks in extreme events, and these benefits are evaluated in the NY area. Focusing on public transit, selected passenger multimodal facilities are identified that connect to transit, emphasizing rail-bus connectivity. Publicly available databases are used from MTA, NJ rail, and U.S. DOT’s IPCD. For NYC, statistical analyses suggest there may be some differences by poverty levels. For NYC and three northeastern NJ cities connectivity differs for stations that are terminuses and have high rail convergence. This report provides statistical summaries, cases, and a literature review to characterize multi-modal facilities and their use in extreme events. Recommendations and future research directions are provided for the role of passenger multi-modality to enhance transit flexibility.
The research was funded by a faculty research grant from the U.S. Department of Transportation, Region 2 University Transportation Research Center to NYU-Wagner, 2012-2014.
2012
Air pollution is considered a risk factor for asthma. In this paper, we analyze the association between daily hospital admissions for asthma and ambient air pollution concentrations in four New York City counties. Negative binomial regression is used to model the association between daily asthma hospital admissions and ambient air pollution concentrations. Potential confounding factors such as heat index, day of week, holidays, yearly population changes, and seasonal and long-term trends are controlled for in the models. Nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO) show the most consistent statistically significant associations with daily hospitalizations for asthma during the entire period (1996-2000). The associations are stronger for children (0 - 17 years) than for adults (18 - 64 years). Relative risks (RR) for the inter-quartile range (IQR) of same day 24-hour average pollutant concentration and asthma hospitalizations for children for the four county hospitalization totals were: NO2 (IQR = 0.011 ppm, RR = 1.017, 95% CI = 1.001, 1.034), SO2 (IQR = 0.008 ppm, RR = 1.023, 95% CI = 1.004, 1.042), CO (IQR = 0.232 ppm, RR = 1.014, 95% CI = 1.003, 1.025). In the case of ozone (O3) and particulate matter (PM2.5) statistically significant associations were found for daily one-hour maxima values and children’s asthma hospitalization in models that used lagged values for air pollution concentrations. Five-day weighted average lag models resulted in these estimates: O3 (one-hour maxima) (IQR = 0.025 ppm, RR = 1.049, 95% CI = 1.002, 1.098), PM2.5 (one-hour maxima) (IQR = 16.679 μg/m3, RR = 1.055, 95% CI = 1.008, 1.103). In addition, seasonal variations were also explored for PM2.5 and statistically significant associations with daily hospital admissions for asthma were found during the colder months (November-March) of the year. Important differences in pollution effects were found across pollutants, counties, and age groups. The results for PM2.5 suggest that the composition of PM is important to this health outcome, since the major sources of NYC PM differ between winter and summer months.
2011
Public and private decision-makers continue to seek risk-based approaches to allocate funds to help communities respond to disasters, accidents, and terrorist attacks involving critical infrastructure facilities. The requirements for emergency response capability depend both upon risks within a region's jurisdiction and mutual aid agreements that have been made with other regions. In general, regions in close proximity to infrastructure would benefit more from resources to improve preparedness because there is a greater potential for an event requiring emergency response to occur if there are more facilities at which such events could occur. Thus, a potentially important input into decisions about allocating funds for security is the proximity of a community to high concentrations of infrastructure systems that potentially could be at risk to an industrial accident, natural disaster, or terrorist attack. In this paper, we describe a methodology for measuring a region's exposure to infrastructure-related risks that captures both a community's concentration of facilities or sites considered to be vulnerable and of the proximity of these facilities to surrounding infrastructure systems. These measures are based on smoothing-based nonparametric probability density estimators, which are then used to estimate the probability of the entire infrastructure occurring within any specified distance of facilities in a county. The set of facilities used in the paper to illustrate the use of this methodology consists of facilities identified as vulnerable through the California Buffer Zone Protection Program. For infrastructure in surrounding areas we use dams judged to be high hazards, and BART tracks. The results show that the methodology provides information about patterns of critical infrastructure in regions that is relevant for decisions about how to allocate terrorism security and emergency preparedness resources.
2010
Focus group methods are adapted here to address two important needs for risk communication: (1) to provide approaches to risk communication in very extreme and catastrophic events, and (2) to obtain risk communication content within the specific catastrophe area of chemical and biological attacks. Focus groups were designed and conducted according to well-established protocols using hypothetical sarin and smallpox attacks resulting in a chemical or biological release in a confined public space in a transit system. These cases were used to identify content for risk communication information and suggest directions for further research in this area. Common procedures for conducting focus groups were used based on an initial review of such procedures. Four focus groups - two for each type of release - each lasted about two hours. Participants were professionals normally involved in emergencies in health, emergency management, and transportation. They were selected using a snowball sampling technique. Examples of findings for approaches to communicating such risks included how information should be organized over time and how space, locations, and places should be defined for releases to anchor perceptions geographically. Examples of findings for risk communication content are based on how professionals reacted to risk communications used during the two hypothetical releases they were presented with and how they suggested using risk communications. These findings have considerable implications for using and structuring focus groups to derive risk communication procedures and types of content to be used in the context of catastrophes.
2009
In this paper the causes and consequences of accidents in US hazardous liquid pipelines that result in the unplanned release of hazardous liquids are examined. Understanding how different causes of accidents are associated with consequence measures can provide important inputs into risk management for this (and other) critical infrastructure systems. Data on 1582 accidents related to hazardous liquid pipelines for the period 2002–2005 are analyzed. The data were obtained from the US Department of Transportation’s Office of Pipeline Safety (OPS). Of the 25 different causes of accidents included in the data the most common ones are equipment malfunction, corrosion, material and weld failures, and incorrect operation. This paper focuses on one type of consequence–various costs associated with these pipeline accidents–and causes associated with them. The following economic consequence measures related to accident cost are examined: the value of the product lost; public, private, and operator property damage; and cleanup, recovery, and other costs. Logistic regression modeling is used to determine what factors are associated with nonzero product loss cost, nonzero property damage cost and nonzero cleanup and recovery costs. The factors examined include the system part involved in the accident, location characteristics (offshore versus onshore location, occurrence in a high consequence area), and whether there was liquid ignition, an explosion, and/or a liquid spill. For the accidents associated with nonzero values for these consequence measures (weighted) least squares regression is used to understand the factors related to them, as well as how the different initiating causes of the accidents are associated with the consequence measures. The results of these models are then used to construct illustrative scenarios for hazardous liquid pipeline accidents. These scenarios suggest that the magnitude of consequence measures such as value of product lost, property damage and cleanup and recovery costs are highly dependent on accident cause and other accident characteristics. The regression models used to construct these scenarios constitute an analytical tool that industry decision-makers can use to estimate the possible consequences of accidents in these pipeline systems by cause (and other characteristics) and to allocate resources for maintenance and to reduce risk factors in these systems.
2008
Quantitative risk assessment is a growing, important component of the larger field of risk assessment. The need to understand the risks of an activity, be it economic, environmental, public health/biomedical, or even based on terrorist or other hazardous impacts, has led to a number of methods of analysis for many different application scenarios. Indeed, all major areas of the larger endeavor - hazard identification, dose-response assessment, exposure assessment, and risk characterization - rely on and benefit from quantitative operations. Within these contexts, enhanced understanding of both the variability and the uncertainty inherent in the risk identification process is critically dependent upon proper implementation of appropriate statistical methodologies.
2007
The U.S. Environmental Protection Agency defines environmental justice as "...the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies."2 Environmental injustice has been defined as the disproportionate exposure of communities of color and poor people, or other vulnerable groups, such as children and the elderly, to environmental risks.3
In the analyses described in this article, Geographic Information Systems (GIS)4 techniques and models were used extensively to facilitate and streamline the analysis of demographic and socioeconomic data about people living in close proximity to waste transfer stations and major highways, and to determine whether a disproportionate number of people in communities of color and poor people live in proximity to these sites. The area of application for this analysis was a portion of the South Bronx, New York.
2005
As a critical infrastructure sector, electricity enables numerous other critical infrastructures to function, and in many cases is the critical path for their operation. This is underscored by the fact that historically, electric power outages have played a central role in disruptions of many other infrastructures. As a consequence of the centrality of its role, electricity is potentially a key target for terrorist attacks. This case sets forth risks in terms of hypothetical alternative attack scenarios in the form of various grid configurations that are vulnerable based on both natural events in the U.S. and terrorism internationally as well as in terms of the odds that outages will occur and other characteristics of outages will change. Consequences are then identified based on hundreds of events and other records that portray the effects that electric power outages have on key public services and businesses. Economic accounting is conducted in terms of human premature death and injury and business loss for some of the key consequence areas, using a wide range of economic factors.
Although direct terrorist attacks on the oil and gas sector have not occurred in the United States, there are many recorded attacks on the sector in a large number of countries around the world. The statistical analysis and other evaluations of these data provide an important foundation for identifying case events that can be selected for an in-depth evaluation of the role of Supervisory Control and Data Acquisition (SCADA) in the disabling and rate of recovery of the oil and gas system. This report analyzes international terrorist attacks using a database from the National Memorial Institute for the Prevention of Terrorism (MIPT) which includes information about terrorist attacks from all over the world affecting all sectors, including oil and gas. The report looks at annual data for the period 1990-2005 with a special emphasis on attacks occurring in countries with the highest number of attacks during this period. Section 1 provides an introduction to the report. Section 2 looks at the number of incidents, including total incidents over time, attacks on the oil and gas sector as a percentage of total terrorist attacks, and incidents over time by geographical region. In Section 3 the number of fatalities associated with the attacks is examined, along with the fatalities associated with attacks on the oil and gas sector as a percentage of all fatalities associated with terrorist attacks. Section 4 looks at injuries associated with the attacks, and the injuries associated with attacks on the oil and gas sector as a percentage of all injuries associated with terrorist attacks. Section 5 provides a brief discussion about the association between injuries and fatalities. Section 6 contains a discussion of the kinds of components attacked. Finally, Section 7 ends with some concluding remarks. Although the terrorist attacks on the oil and gas sector are a relatively small proportion of terrorist attacks overall, the data show that a significant number of attacks have occurred over the period 1990-2005, suggesting that the sector is vulnerable. If terrorist groups feel that carrying out a physical attack within the United States is too difficult they could turn their attention to other vulnerabilities such as SCADA systems.
2004
The South Bronx is a low-income, minority community in New York City. It has one of the highest asthma rates in the country, which community residents feel is related to poor air quality. Community residents also feel that the air quality data provided by the New York State Department of Environmental Conservation (DEC) through its network of monitoring stations do not reflect the poor quality of the air they breathe. This is due to the fact that these monitoring stations are located 15 m above ground. In the year 2001 this project collected air quality data at three locations in the study area. They were collected close to ground-level at a height of 4 m by a mobile laboratory placed in a van as part of the South Bronx Environmental Health and Policy Study. This paper compares data collected by the project with data from DEC's monitoring stations in Bronx County during the same periods. The goal of the comparison is to gain a better understanding of differences in measured air quality concentrations at these different heights. Although there is good agreement in the data among DEC stations there are some important differences between ground-level measurements and DEC data. For PM2.5 the measured concentrations by the van were similar to those recorded by DEC stations. In the case of ozone, the concentrations recorded at ground level were similar or lower than those recorded by DEC stations. For NO2, however, the concentrations recorded at ground level were over twice as high as those recorded by DEC. In the case of SO2, ground level measurements were substantially higher in August but very similar in the other two periods. CO concentrations measured at ground-level tend to be 60–90% higher than those recorded by DEC monitoring stations. Despite these differences, van measurements of SO2 and CO concentrations were well below EPA standards.